Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins.

Identifieur interne : 001283 ( Main/Exploration ); précédent : 001282; suivant : 001284

NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins.

Auteurs : T H Xia [Suisse] ; J H Bushweller ; P. Sodano ; M. Billeter ; O. Björnberg ; A. Holmgren ; K. Wüthrich

Source :

RBID : pubmed:1304339

Descripteurs français

English descriptors

Abstract

The determination of the NMR structure of oxidized Escherichia coli glutaredoxin in aqueous solution is described, and comparisons of this structure with that of reduced E. coli glutaredoxin and the related proteins E. coli thioredoxin and T4 glutaredoxin are presented. Based on nearly complete sequence-specific 1H-NMR assignments, 804 nuclear Overhauser enhancement distance constraints and 74 dihedral angle constraints were obtained as the input for the structure calculations, for which the distance geometry program DIANA was used followed by simulated annealing with the program X-PLOR. The molecular architecture of oxidized glutaredoxin is made up of three helices and a four-stranded beta-sheet. The three-dimensional structures of oxidized and the recently described reduced glutaredoxin are very similar. Quantitative analysis of the exchange rates of 34 slowly exchanging amide protons from corresponding series of two-dimensional [15N,1H]-correlated spectra of oxidized and reduced glutaredoxin showed close agreement, indicating almost identical hydrogen-bonding patterns. Nonetheless, differences in local dynamics involving residues near the active site and the C-terminal alpha-helix were clearly manifested. Comparison of the structure of E. coli glutaredoxin with those of T4 glutaredoxin and E. coli thioredoxin showed that all three proteins have a similar overall polypeptide fold. An area of the protein surface at the active site containing Arg 8, Cys 11, Pro 12, Tyr 13, Ile 38, Thr 58, Val 59, Pro 60, Gly 71, Tyr 72, and Thr 73 is proposed as a possible site for interaction with other proteins, in particular ribonucleotide reductase. It was found that this area corresponds to previously proposed interaction sites in T4 glutaredoxin and E. coli thioredoxin. The solvent-accessible surface area at the active site of E. coli glutaredoxin showed a general trend to increase upon reduction. Only the sulfhydryl group of Cys 11 is exposed to the solvent, whereas that of Cys 14 is buried and solvent inaccessible.

DOI: 10.1002/pro.5560010302
PubMed: 1304339
PubMed Central: PMC2142208


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins.</title>
<author>
<name sortKey="Xia, T H" sort="Xia, T H" uniqKey="Xia T" first="T H" last="Xia">T H Xia</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bushweller, J H" sort="Bushweller, J H" uniqKey="Bushweller J" first="J H" last="Bushweller">J H Bushweller</name>
</author>
<author>
<name sortKey="Sodano, P" sort="Sodano, P" uniqKey="Sodano P" first="P" last="Sodano">P. Sodano</name>
</author>
<author>
<name sortKey="Billeter, M" sort="Billeter, M" uniqKey="Billeter M" first="M" last="Billeter">M. Billeter</name>
</author>
<author>
<name sortKey="Bjornberg, O" sort="Bjornberg, O" uniqKey="Bjornberg O" first="O" last="Björnberg">O. Björnberg</name>
</author>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</author>
<author>
<name sortKey="Wuthrich, K" sort="Wuthrich, K" uniqKey="Wuthrich K" first="K" last="Wüthrich">K. Wüthrich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1992">1992</date>
<idno type="RBID">pubmed:1304339</idno>
<idno type="pmid">1304339</idno>
<idno type="pmc">PMC2142208</idno>
<idno type="doi">10.1002/pro.5560010302</idno>
<idno type="wicri:Area/Main/Corpus">001286</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001286</idno>
<idno type="wicri:Area/Main/Curation">001286</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001286</idno>
<idno type="wicri:Area/Main/Exploration">001286</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins.</title>
<author>
<name sortKey="Xia, T H" sort="Xia, T H" uniqKey="Xia T" first="T H" last="Xia">T H Xia</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich</wicri:regionArea>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bushweller, J H" sort="Bushweller, J H" uniqKey="Bushweller J" first="J H" last="Bushweller">J H Bushweller</name>
</author>
<author>
<name sortKey="Sodano, P" sort="Sodano, P" uniqKey="Sodano P" first="P" last="Sodano">P. Sodano</name>
</author>
<author>
<name sortKey="Billeter, M" sort="Billeter, M" uniqKey="Billeter M" first="M" last="Billeter">M. Billeter</name>
</author>
<author>
<name sortKey="Bjornberg, O" sort="Bjornberg, O" uniqKey="Bjornberg O" first="O" last="Björnberg">O. Björnberg</name>
</author>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</author>
<author>
<name sortKey="Wuthrich, K" sort="Wuthrich, K" uniqKey="Wuthrich K" first="K" last="Wüthrich">K. Wüthrich</name>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="ISSN">0961-8368</idno>
<imprint>
<date when="1992" type="published">1992</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Escherichia coli (metabolism)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (methods)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Proteins (chemistry)</term>
<term>Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Software (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conformation des protéines (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Logiciel (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines (composition chimique)</term>
<term>Protéines (métabolisme)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spectroscopie par résonance magnétique (méthodes)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Spectroscopy</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Spectroscopie par résonance magnétique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Glutaredoxins</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Oxidoreductases</term>
<term>Protein Conformation</term>
<term>Protein Structure, Secondary</term>
<term>Sequence Homology, Amino Acid</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Glutarédoxines</term>
<term>Logiciel</term>
<term>Modèles moléculaires</term>
<term>Oxidoreductases</term>
<term>Oxydoréduction</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Structure secondaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The determination of the NMR structure of oxidized Escherichia coli glutaredoxin in aqueous solution is described, and comparisons of this structure with that of reduced E. coli glutaredoxin and the related proteins E. coli thioredoxin and T4 glutaredoxin are presented. Based on nearly complete sequence-specific 1H-NMR assignments, 804 nuclear Overhauser enhancement distance constraints and 74 dihedral angle constraints were obtained as the input for the structure calculations, for which the distance geometry program DIANA was used followed by simulated annealing with the program X-PLOR. The molecular architecture of oxidized glutaredoxin is made up of three helices and a four-stranded beta-sheet. The three-dimensional structures of oxidized and the recently described reduced glutaredoxin are very similar. Quantitative analysis of the exchange rates of 34 slowly exchanging amide protons from corresponding series of two-dimensional [15N,1H]-correlated spectra of oxidized and reduced glutaredoxin showed close agreement, indicating almost identical hydrogen-bonding patterns. Nonetheless, differences in local dynamics involving residues near the active site and the C-terminal alpha-helix were clearly manifested. Comparison of the structure of E. coli glutaredoxin with those of T4 glutaredoxin and E. coli thioredoxin showed that all three proteins have a similar overall polypeptide fold. An area of the protein surface at the active site containing Arg 8, Cys 11, Pro 12, Tyr 13, Ile 38, Thr 58, Val 59, Pro 60, Gly 71, Tyr 72, and Thr 73 is proposed as a possible site for interaction with other proteins, in particular ribonucleotide reductase. It was found that this area corresponds to previously proposed interaction sites in T4 glutaredoxin and E. coli thioredoxin. The solvent-accessible surface area at the active site of E. coli glutaredoxin showed a general trend to increase upon reduction. Only the sulfhydryl group of Cys 11 is exposed to the solvent, whereas that of Cys 14 is buried and solvent inaccessible.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">1304339</PMID>
<DateCompleted>
<Year>1993</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0961-8368</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1</Volume>
<Issue>3</Issue>
<PubDate>
<Year>1992</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>310-21</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The determination of the NMR structure of oxidized Escherichia coli glutaredoxin in aqueous solution is described, and comparisons of this structure with that of reduced E. coli glutaredoxin and the related proteins E. coli thioredoxin and T4 glutaredoxin are presented. Based on nearly complete sequence-specific 1H-NMR assignments, 804 nuclear Overhauser enhancement distance constraints and 74 dihedral angle constraints were obtained as the input for the structure calculations, for which the distance geometry program DIANA was used followed by simulated annealing with the program X-PLOR. The molecular architecture of oxidized glutaredoxin is made up of three helices and a four-stranded beta-sheet. The three-dimensional structures of oxidized and the recently described reduced glutaredoxin are very similar. Quantitative analysis of the exchange rates of 34 slowly exchanging amide protons from corresponding series of two-dimensional [15N,1H]-correlated spectra of oxidized and reduced glutaredoxin showed close agreement, indicating almost identical hydrogen-bonding patterns. Nonetheless, differences in local dynamics involving residues near the active site and the C-terminal alpha-helix were clearly manifested. Comparison of the structure of E. coli glutaredoxin with those of T4 glutaredoxin and E. coli thioredoxin showed that all three proteins have a similar overall polypeptide fold. An area of the protein surface at the active site containing Arg 8, Cys 11, Pro 12, Tyr 13, Ile 38, Thr 58, Val 59, Pro 60, Gly 71, Tyr 72, and Thr 73 is proposed as a possible site for interaction with other proteins, in particular ribonucleotide reductase. It was found that this area corresponds to previously proposed interaction sites in T4 glutaredoxin and E. coli thioredoxin. The solvent-accessible surface area at the active site of E. coli glutaredoxin showed a general trend to increase upon reduction. Only the sulfhydryl group of Cys 11 is exposed to the solvent, whereas that of Cys 14 is buried and solvent inaccessible.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>T H</ForeName>
<Initials>TH</Initials>
<AffiliationInfo>
<Affiliation>Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bushweller</LastName>
<ForeName>J H</ForeName>
<Initials>JH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sodano</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Billeter</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Björnberg</LastName>
<ForeName>O</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wüthrich</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="Y">Oxidoreductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="Y">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="Y">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1992</Year>
<Month>3</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1992</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1992</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">1304339</ArticleId>
<ArticleId IdType="pmc">PMC2142208</ArticleId>
<ArticleId IdType="doi">10.1002/pro.5560010302</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1988 Nov 5;204(1):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3216390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Sep 1;200(2):369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1889405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1984 Sep 5;178(1):63-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6548264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3672-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">34620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Jun;72(6):2305-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1094461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Aug 25;266(24):16105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1874748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Oct 20;221(4):1311-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1942053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Mar 5;212(1):167-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2181145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1989 Apr 20;206(4):677-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2786963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:237-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3896121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1984 Jul;3(7):1443-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6378624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 19;221(4612):709-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6879170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Dec;75(12):5827-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">366603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Jan 6;243(4887):45-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2911719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Dec 5;264(34):20438-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2684977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Sep 25;265(27):16027-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2204619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 May 1;29(17):4129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2193685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Jul 5;214(1):183-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2164583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Feb 5;217(3):531-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1671604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Feb 5;217(3):517-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1847217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 Oct 17;136(1):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6352262</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Zurich</li>
</region>
<settlement>
<li>Zurich</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Billeter, M" sort="Billeter, M" uniqKey="Billeter M" first="M" last="Billeter">M. Billeter</name>
<name sortKey="Bjornberg, O" sort="Bjornberg, O" uniqKey="Bjornberg O" first="O" last="Björnberg">O. Björnberg</name>
<name sortKey="Bushweller, J H" sort="Bushweller, J H" uniqKey="Bushweller J" first="J H" last="Bushweller">J H Bushweller</name>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
<name sortKey="Sodano, P" sort="Sodano, P" uniqKey="Sodano P" first="P" last="Sodano">P. Sodano</name>
<name sortKey="Wuthrich, K" sort="Wuthrich, K" uniqKey="Wuthrich K" first="K" last="Wüthrich">K. Wüthrich</name>
</noCountry>
<country name="Suisse">
<region name="Canton de Zurich">
<name sortKey="Xia, T H" sort="Xia, T H" uniqKey="Xia T" first="T H" last="Xia">T H Xia</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001283 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001283 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:1304339
   |texte=   NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:1304339" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020